Any l-state solutions of the Hulthén potential by the asymptotic iteration method

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 3911521
(http://iopscience.iop.org/0305-4470/39/37/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.106
The article was downloaded on 03/06/2010 at 04:49

Please note that terms and conditions apply.

Any l-state solutions of the Hulthén potential by the asymptotic iteration method

O Bayrak ${ }^{1,2}$, G Kocak ${ }^{2}$ and I Boztosun ${ }^{2}$
${ }^{1}$ Department of Physics, Faculty of Arts and Sciences, Bozok University, Yozgat, Turkey
${ }^{2}$ Department of Physics, Faculty of Arts and Sciences, Erciyes University, Kayseri, Turkey

Received 29 June 2006, in final form 1 August 2006
Published 29 August 2006
Online at stacks.iop.org/JPhysA/39/11521

Abstract

In this paper, we present the analytical solution of the radial Schrödinger equation for the Hulthén potential within the framework of the asymptotic iteration method by using an approximation to the centrifugal potential for any l states. We obtain the energy eigenvalues and corresponding eigenfunctions for different screening parameters. The wavefunctions are physical and energy eigenvalues are in good agreement with the results obtained by other methods for different δ values. In order to demonstrate this, the results of the asymptotic iteration method are compared with the results of the supersymmetry, numerical integration, variational and shifted $1 / N$ expansion methods.

PACS numbers: 03.65.Ge, 34.20.Cf, 34.20.Gj

1. Introduction

Over the last few decades, the energy eigenvalues and corresponding eigenfunctions between interaction systems have raised a great deal of interest in relativistic quantum mechanics as well as in non-relativistic quantum mechanics. The exact solution of the wave equations (relativistic or non-relativistic) is very important since the wavefunction contains all the necessary information regarding the quantum system under consideration. Analytical methods such as the supersymmetry (SUSY) [1] and Nikiforov-Uvarov (NU) methods [2] have been used to solve the wave equations exactly or quasi-exactly for non-zero angular momentum quantum number $(l \neq 0)$ by means of a given potential. The radial Schrödinger equation for the Hulthèn potential is solved exactly by using several techniques [6-8] for $l=0$. For the case $l \neq 0$, the effective Hulthén potential cannot be solved exactly, but a number of methods have been used to find the bound-state energy eigenvalues numerically [9] and quasianalytically, such as the variational [9], perturbation [10], shifted $1 / N$ expansion [11], NU [12] and SUSY [13] methods. The Hulthén potential [6] is one of the important short-range potentials in physics and it has been applied to a number of areas such as nuclear and particle physics, atomic physics, condensed matter and chemical physics (see [9] and references
therein). Therefore, it would be interesting and important to solve the non-relativistic radial Schrödinger equation for this potential for $l \neq 0$, since it has been extensively used to describe the bound and continuum states of the interaction systems. Recently, an alternative method, called the asymptotic iteration method (AIM), has been developed by Çiftçi et al [3, 4] for solving second-order homogeneous linear differential equations and it has been applied to solve the non-relativistic radial Schrödinger equation or the relativistic Dirac equation.

In this paper, we aim to solve the Hulthén potential to obtain the energy eigenvalues and corresponding eigenfunctions for any l states. In the next section, AIM is introduced. Then, in section 3, the Schrödinger equation is solved by using AIM for the Hulthén potential for any l states and our AIM results are given in comparison with the results of the numerical integration [9], variational [9], shifted $1 / N$ expansion [11] and SUSY [13] methods. Finally, section 4 is devoted to the summary and conclusion.

2. Overview of the asymptotic iteration method

2.1. Energy eigenvalues

AIM is briefly outlined here and the details can be found in [3-5]. AIM is proposed to solve the second-order differential equations of the form

$$
\begin{equation*}
y^{\prime \prime}=\lambda_{0}(x) y^{\prime}+s_{0}(x) y \tag{1}
\end{equation*}
$$

where $\lambda_{0}(x) \neq 0$ and the prime denotes the derivative with respect to x. The variables $s_{0}(x)$ and $\lambda_{0}(x)$ are sufficiently differentiable. The differential equation (1) has a general solution [3]

$$
\begin{equation*}
y(x)=\exp \left(-\int^{x} \alpha\left(x_{1}\right) \mathrm{d} x_{1}\right)\left[C_{2}+C_{1} \int^{x} \exp \left(\int^{x_{1}}\left[\lambda_{0}\left(x_{2}\right)+2 \alpha\left(x_{2}\right)\right] \mathrm{d} x_{2}\right) \mathrm{d} x_{1}\right] \tag{2}
\end{equation*}
$$

for sufficiently large $k, k>0$, if

$$
\begin{equation*}
\frac{s_{k}(x)}{\lambda_{k}(x)}=\frac{s_{k-1}(x)}{\lambda_{k-1}(x)}=\alpha(x), \quad k=1,2,3, \ldots \tag{3}
\end{equation*}
$$

where

$$
\begin{align*}
& \lambda_{k}(x)=\lambda_{k-1}^{\prime}(x)+s_{k-1}(x)+\lambda_{0}(x) \lambda_{k-1}(x) \\
& s_{k}(x)=s_{k-1}^{\prime}(x)+s_{0}(x) \lambda_{k-1}(x), \quad k=1,2,3, \ldots \tag{4}
\end{align*}
$$

Note that one can also start the recurrence relations from $k=0$ with the initial conditions $\lambda_{-1}=1$ and $s_{-1}=0$ [20]. For a given potential such as the Hulthén potential, the radial Schrödinger equation is converted to the form of equation (1). Then, $\mathrm{s}_{0}(x)$ and $\lambda_{0}(x)$ are determined and $\mathrm{s}_{k}(x)$ and $\lambda_{k}(x)$ parameters are calculated by the recurrence relations given by equation (4).

The termination condition of the method in equation (3) can be arranged as

$$
\begin{equation*}
\Delta_{k}(x)=\lambda_{k}(x) s_{k-1}(x)-\lambda_{k-1}(x) s_{k}(x)=0, \quad k=1,2,3, \ldots \tag{5}
\end{equation*}
$$

The energy eigenvalues are obtained from the roots of equation (5) if the problem is exactly solvable. If not, for a specific n principal quantum number, we choose a suitable x_{0} point, determined generally as the maximum value of the asymptotic wavefunction or the minimum value of the potential [3, 18-20], and the approximate energy eigenvalues are obtained from the roots of this equation for sufficiently large values of k with iteration.

2.2. Energy eigenfunctions

In this study, we seek the exact solution of the radial Schrödinger equation for which the relevant second-order homogenous linear differential equation takes the following general form [4]:

$$
\begin{equation*}
y^{\prime \prime}=2\left(\frac{a x^{N+1}}{1-b x^{N+2}}-\frac{(t+1)}{x}\right) y^{\prime}-\frac{w_{k}^{t}(N) x^{N}}{1-b x^{N+2}} y, \quad 0<x<\infty . \tag{6}
\end{equation*}
$$

If this equation is compared to equation (1), it entails the following expressions:

$$
\begin{equation*}
\lambda_{0}(x)=2\left(\frac{a x^{N+1}}{1-b x^{N+2}}-\frac{(t+1)}{x}\right), \quad s_{0}(x)=-\frac{w_{k}^{t}(N) x^{N}}{1-b x^{N+2}} \tag{7}
\end{equation*}
$$

a and b are constants and $w_{k}^{t}(N)$ can be determined from condition (3) for $k=0,1,2,3, \ldots$ and $N=-1,0,1,2,3, \ldots$ as follows:

$$
\begin{align*}
& w_{k}^{t}(-1)=k(2 a+2 b t+(k+1) b), \tag{8}\\
& w_{k}^{t}(0)=2 k(2 a+2 b t+(2 k+1) b), \tag{9}\\
& w_{k}^{t}(1)=3 k(2 a+2 b t+(3 k+1) b), \tag{10}\\
& w_{k}^{t}(2)=4 k(2 a+2 b t+(4 k+1) b), \tag{11}\\
& w_{k}^{t}(3)=5 k(2 a+2 b t+(5 k+1) b), \tag{12}
\end{align*}
$$

Hence, these formulae are easily generalized as

$$
\begin{equation*}
w_{k}^{t}(N)=b(N+2)^{2} k\left(k+\frac{(2 t+1) b+2 a}{(N+2) b}\right) . \tag{13}
\end{equation*}
$$

The exact eigenfunctions can be derived from the following generator:

$$
\begin{equation*}
y_{n}(x)=C_{2} \exp \left(-\int^{x} \frac{s_{k}\left(x^{\prime}\right)}{\lambda_{k}\left(x^{\prime}\right)} \mathrm{d} x^{\prime}\right) \tag{14}
\end{equation*}
$$

where $k \geqslant n, n$ represents the radial quantum number and k denotes the iteration number. For exactly solvable potentials, the radial quantum number n is equal to the iteration number k and the eigenfunctions are obtained directly from equation (14). For nontrivial potentials that have no exact solutions, k is always larger than n in these numerical solutions and the approximate energy eigenvalues are obtained from the roots of equation (5) for sufficiently large values of k with iteration. It should be pointed out that $\alpha(x)$ given by equation (3) is equal to zero for the ground state. Therefore, using equation (3) with (7) in equation (14), the eigenfunctions are obtained as follows:

$$
\begin{aligned}
y_{0}(x)=C_{2}, & y_{1}(x)=-C_{2}(N+2) \sigma\left(1-\frac{b(\rho+1)}{\sigma} x^{N+2}\right), \\
y_{2}(x) & =C_{2}(N+2)^{2} \sigma(\sigma+1)\left(1-\frac{2 b(\rho+2)}{\sigma} x^{N+2}+\frac{b^{2}(\rho+2)(\rho+3)}{\sigma(\sigma+1)} x^{2(N+2)}\right), \\
y_{3}(x) & =-C_{2} \frac{\sigma(\sigma+1)(\sigma+2)}{(N+2)^{-3}}\left(1-\frac{3 b(\rho+3)}{\sigma} x^{N+2}+\frac{3 b^{2}(\rho+3)(\rho+4)}{\sigma(\sigma+1)} x^{2(N+2)}\right. \\
& \left.-\frac{b^{3}(\rho+3)(\rho+4)(\rho+5)}{\sigma(\sigma+1)(\sigma+2)} x^{3(N+2)}\right),
\end{aligned}
$$

Finally, the following general formula for the exact solutions $y_{n}(x)$ is obtained as

$$
\begin{equation*}
y_{n}(x)=(-1)^{n} C_{2}(N+2)^{n}(\sigma)_{n} F_{1}\left(-n, \rho+n ; \sigma ; b x^{N+2}\right) . \tag{15}
\end{equation*}
$$

It is important to note that the square-integrable one in L^{2} is this total wavefunction which is the asymptotic form of the wavefunction times $y_{n}(x)$ given by equation (14). Here, $(\sigma)_{n}=\frac{\Gamma(\sigma+n)}{\Gamma(\sigma)}, \sigma=\frac{2 t+N+3}{N+2}$ and $\rho=\frac{(2 t+1) b+2 a}{(N+2) b} .(\sigma)_{n}$ and ${ }_{2} F_{1}$ are known as the Pochhammer symbol and the Gauss hypergeometric function, respectively.

3. Calculation of the energy eigenvalues and eigenfunctions

The motion of a particle with the mass M in the spherically symmetric potential is described in the spherical coordinates by the following Schrödinger equation:
$\frac{-\hbar^{2}}{2 M}\left(\frac{\partial^{2}}{\partial r^{2}}+\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right]+V(r)\right) \Psi_{n l m}(r, \theta, \phi)$

$$
\begin{equation*}
=E \Psi_{n l m}(r, \theta, \phi) \tag{16}
\end{equation*}
$$

Defining $\Psi_{n l m}(r, \theta, \phi)=R_{n l}(r) Y_{l m}(\theta, \phi)$, we obtain the radial part of the Schrödinger equation:

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\right) R_{n l}(r)+\frac{2 M}{\hbar^{2}}\left[E-V(r)-\frac{l(l+1) \hbar^{2}}{2 M r^{2}}\right] R_{n l}(r)=0 \tag{17}
\end{equation*}
$$

It is sometimes convenient to define $R_{n l}(r)$ and the effective potential as follows:

$$
\begin{equation*}
R_{n l}(r)=\frac{u_{n l}(r)}{r}, \quad V_{\mathrm{eff}}=V(r)+\frac{l(l+1) \hbar^{2}}{2 M r^{2}} \tag{18}
\end{equation*}
$$

Since

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{2}{r} \frac{\mathrm{~d}}{\mathrm{~d} r}\right) \frac{u_{n l}(r)}{r}=\frac{1}{r} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}} u_{n l}(r), \tag{19}
\end{equation*}
$$

the radial Schrödinger equation [8] given by equation (17) follows that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u_{n l}(r)}{\mathrm{d} r^{2}}+\frac{2 M}{\hbar^{2}}\left[E-V_{\text {eff }}\right] u_{n l}(r)=0 \tag{20}
\end{equation*}
$$

The Hulthén potential [6] is given by

$$
\begin{equation*}
V_{\mathrm{H}}(r)=-Z e^{2} \delta \frac{\mathrm{e}^{-\delta r}}{1-\mathrm{e}^{-\delta r}} \tag{21}
\end{equation*}
$$

where Z and δ are, respectively, the atomic number and the screening parameter, determining the range for the Hulthén potential. The Hulthén potential behaves like the Coulomb potential near the origin $(r \longrightarrow 0)$, but in the asymptotic region $(r \gg 1)$ the Hulthén potential decreases exponentially, so its capacity for bound states is smaller than the Coulomb potential. However, for small values of the screening parameter δ, the Hulthén potential becomes the Coulomb potential given by $V_{\mathrm{C}}=-\frac{Z e^{2}}{r}$. The effective Hulthén potential is

$$
\begin{equation*}
V_{\mathrm{eff}}(r)=V_{\mathrm{H}}(r)+V_{l}=-Z e^{2} \delta \frac{\mathrm{e}^{-\delta r}}{1-\mathrm{e}^{-\delta r}}+\frac{l(l+1) \hbar^{2}}{2 M r^{2}} \tag{22}
\end{equation*}
$$

where $V_{l}=\frac{l(l+1) \hbar^{2}}{2 M r^{2}}$ is known as the centrifugal term. This effective potential cannot be solved analytically for $l \neq 0$ because of the centrifugal term. Therefore, we must use an approximation for the centrifugal term similar to other authors [12-17]. In this approximation, $\frac{1}{r^{2}}=\delta^{2} \frac{\mathrm{e}^{-\delta r}}{\left(1-\mathrm{e}^{-\delta r}\right)^{2}}$ is used for the centrifugal term. As shown in figure 1 , this approximation is

Figure 1. The variation of the effective Hulthén $V_{\text {eff }}(r)$ and approximate effective Hulthén potentials $\widetilde{V}_{\text {eff }}(r)$ with respect to δr for various values of the screening parameter. The parameters are in atomic units ($\hbar=e=m=1$) and δ change from 0.4 to 5.2 in steps of 0.4.
only valid for small δr and it breaks down in the high-screening region. For small $\delta r, \widetilde{V}_{\text {eff }}(r)$ is very well approximated to $V_{\text {eff }}(r)$ and the Schrödinger equation for this approximate potential is solvable analytically. So, the effective potential becomes

$$
\begin{equation*}
\widetilde{V}_{\text {eff }}(r)=-Z e^{2} \delta \frac{\mathrm{e}^{-\delta r}}{1-\mathrm{e}^{-\delta r}}+\frac{l(l+1) \hbar^{2} \delta^{2}}{2 M} \frac{\mathrm{e}^{-\delta r}}{\left(1-\mathrm{e}^{-\delta r}\right)^{2}} \tag{23}
\end{equation*}
$$

Instead of solving the radial Schrödinger equation for the effective Hulthén potential $V_{\text {eff }}(r)$ given by equation (22), we now solve the radial Schrödinger equation for the new effective potential $\widetilde{V}_{\text {eff }}(r)$ given by equation (23). Inserting this new effective potential into equation (20) and using the following ansätze in order to make the differential equation more compact:

$$
\begin{equation*}
-\varepsilon^{2}=\frac{2 M E}{\hbar^{2} \delta^{2}}, \quad \beta^{2}=\frac{2 M Z e^{2}}{\hbar^{2} \delta}, \quad \delta r=x \tag{24}
\end{equation*}
$$

the radial Schrödinger equation takes the following form:

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u_{n l}(x)}{\mathrm{d} x^{2}}+\left[-\varepsilon^{2}+\beta^{2} \frac{\mathrm{e}^{-x}}{\left(1-\mathrm{e}^{-x}\right)}-l(l+1) \frac{\mathrm{e}^{-x}}{\left(1-\mathrm{e}^{-x}\right)^{2}}\right] u_{n l}(x)=0 . \tag{25}
\end{equation*}
$$

If we rewrite equation (25) by using a new variable of the form $z=\mathrm{e}^{-x}$, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{2} u_{n l}(z)}{\mathrm{d} z^{2}}+\frac{1}{z} \frac{\mathrm{~d} u_{n l}(z)}{\mathrm{d} z}+\left[-\frac{\varepsilon^{2}}{z^{2}}+\frac{\beta^{2}}{z(1-z)}-\frac{l(l+1)}{z(1-z)^{2}}\right] u_{n l}(z)=0 . \tag{26}
\end{equation*}
$$

In order to solve this equation with AIM, we should transform this equation to the form of equation (1). Therefore, the reasonable physical wavefunction we propose is as follows:

$$
\begin{equation*}
u_{n l}(z)=z^{\varepsilon}(1-z)^{l+1} f_{n l}(z) \tag{27}
\end{equation*}
$$

If we insert this wavefunction into equation (26), we have the second-order homogeneous linear differential equations in the following form:
$\frac{\mathrm{d}^{2} f_{n l}(z)}{\mathrm{d} z^{2}}=\left[\frac{(2 \varepsilon+2 l+3) z-(2 \varepsilon+1)}{z(1-z)}\right] \frac{\mathrm{d} f_{n l}(z)}{\mathrm{d} z}+\left[\frac{(2 \varepsilon+l+2) l+2 \varepsilon-\beta^{2}+1}{z(1-z)}\right] f_{n l}(z)$,
which is now amenable to an AIM solution. By comparing this equation with equation (1), we can write the $\lambda_{0}(z)$ and $s_{0}(z)$ values and by means of equation (4) we may calculate $\lambda_{k}(z)$ and $s_{k}(z)$. This gives

$$
\begin{align*}
\lambda_{0}(z)= & \left(\frac{(2 \varepsilon+2 l+3) z-(2 \varepsilon+1)}{z(1-z)}\right) \\
s_{0}(z)= & \left(\frac{(2 \varepsilon+l+2) l+2 \varepsilon-\beta^{2}+1}{z(1-z)}\right) \\
\lambda_{1}(z)= & \frac{2+6 \varepsilon-7 z-2 l z-\beta^{2} z+12 z^{2} l-18 \varepsilon z-6 \varepsilon z l}{z^{2}(-1+z)^{2}} \tag{29}\\
& +\frac{12 \varepsilon z^{2}+11 z^{2}+4 \varepsilon^{2}+l^{2} z+\beta^{2} z^{2}+4 \varepsilon^{2} z^{2}-8 \varepsilon^{2} z+6 \varepsilon z^{2} l+3 l^{2} z^{2}}{z^{2}(-1+z)^{2}} \\
s_{1}(z)= & \frac{\left(2 l+2 \varepsilon-\beta^{2}+2 \varepsilon l+l^{2}+1\right)(-2+5 z+2 \varepsilon z+2 l z-2 \varepsilon)}{z^{2}(-1+z)^{2}},
\end{align*}
$$

Combining these results with the quantization condition given by equation (5) yields

$$
\begin{array}{ll}
s_{0} \lambda_{1}-s_{1} \lambda_{0}=0 \quad \Rightarrow \quad \varepsilon_{0}=\frac{\beta^{2}-1-2 l-l^{2}}{2(l+1)}, \quad \text { for } k=1, \\
s_{1} \lambda_{2}-s_{2} \lambda_{1}=0 \quad \Rightarrow \quad \varepsilon_{1}=\frac{\beta^{2}-4-4 l-l^{2}}{2(l+2)}, \quad \text { for } k=2, \tag{30}\\
s_{2} \lambda_{3}-s_{3} \lambda_{2}=0 \quad \Rightarrow \quad \varepsilon_{2}=\frac{\beta^{2}-9-6 l-l^{2}}{2(l+3)}, \quad \text { for } k=3,
\end{array}
$$

When the above expressions are generalized, the eigenvalues turn out to be

$$
\begin{equation*}
\varepsilon_{n l}=\left(\frac{\beta^{2}-(n+l+1)^{2}}{2(n+l+1)}\right), \quad n, l=0,1,2,3, \ldots \tag{31}
\end{equation*}
$$

Using equation (24), we obtain the energy eigenvalues $E_{n l}$,

$$
\begin{equation*}
E_{n l}=-\frac{\hbar^{2}}{2 M}\left[\frac{M Z e^{2}}{\hbar^{2}(n+l+1)}-\frac{(n+l+1) \delta}{2}\right]^{2} \tag{32}
\end{equation*}
$$

In the atomic units ($\hbar=M=e=1$) and for $Z=1$, equation (32) turns out to be

$$
\begin{equation*}
E_{n l}=-\frac{1}{2}\left[\frac{1}{(n+l+1)}-\frac{(n+l+1) \delta}{2}\right]^{2} \tag{33}
\end{equation*}
$$

In order to test the accuracy of equation (33), we calculate the energy eigenvalues for $Z=1$, any n and l quantum numbers and several values of the screening parameter. AIM results are compared with the results of the numerical integration [9], variational [9], shifted $1 / N$ expansion [11] and SUSY [13] methods in tables 1 and 2 . As can be seen from the results presented in these tables, the AIM results are in good agreement with the results of

Table 1. Energy eigenvalues of the Hulthén potential as a function of the screening parameter for $2 \mathrm{p}, 3 \mathrm{p}$ and 3 d states in atomic units $(\hbar=m=e=1)$ and for $Z=1$.

State	δ	AIM	SUSY [13]	Numerical integration [9]	Variational [9]	Shifted $\frac{1}{N}[11]$
2 p	0.025	0.1128125	0.1127605	0.1127605	0.1127605	
	0.050	0.1012500	0.1010425	0.1010425	0.1010425	0.1010424
	0.075	0.0903125	0.0898478	0.0898478	0.0898478	
	0.100	0.0800000	0.0791794	0.0791794	0.0791794	0.0791794
	0.150	0.0612500	0.0594415	0.0594415	0.0594415	
	0.200	0.0450000	0.0418854	0.0418860	0.0418860	0.0418857
	0.250	0.0312500	0.0266060	0.0266111	0.0266108	
	0.300	0.0200000	0.0137596	0.0137900	0.0137878	
	0.350	0.0112500	0.0036146	0.0037931	0.0037734	
3 p	0.025	0.0437590	0.0437068	0.0437069	0.0437069	
	0.050	0.0333681	0.0331632	0.0331645	0.0331645	0.03316518
	0.075	0.0243837	0.0239331	0.0239397	0.0239397	
	0.100	0.0168056	0.0160326	0.0160537	0.0160537	0.01606772
	0.150	0.0058681	0.0043599	0.0044663	0.0044660	
3 d	0.025	0.0437587	0.0436030	0.0436030	0.0436030	
	0.050	0.0333681	0.0327532	0.0327532	0.0327532	0.0327532
	0.075	0.0243837	0.0230306	0.0230307	0.0230307	
	0.100	0.0168055	0.0144832	0.0144842	0.0144842	0.0144842
	0.150	0.0058681	0.0132820	0.0013966	0.0013894	

Table 2. Energy eigenvalues of the Hulthén potential as a function of the screening parameter for $4 \mathrm{p}, 4 \mathrm{~d}, 4 \mathrm{f}, 5 \mathrm{p}, 5 \mathrm{~d}, 5 \mathrm{f}, 5 \mathrm{~g}, 6 \mathrm{p}, 6 \mathrm{~d}, 6 \mathrm{f}$ and 6 g states in atomic units $(\hbar=m=e=1)$ and for $Z=1$.

State	δ	AIM	SUSY [13]	Numerical integration [9]	Variational [9]	Shifted $\frac{1}{N}[11]$
4 p	0.025	0.0200000	0.0199480	0.0199489	0.0199489	
	0.050	0.0112500	0.0110430	0.0110582	0.0110582	0.0110725
	0.075	0.0050000	0.0045385	0.0046219	0.0046219	
	0.100	0.0012500	0.0004434	0.0007550	0.0007532	
4 d	0.025	0.0200000	0.0198460	0.0198462	0.0198462	
	0.050	0.0112500	0.0106609	0.0106674	0.0106674	0.0106690
	0.075	0.0050000	0.0037916	0.0038345	0.0196911	
4 f	0.025	0.0200000	0.0196911	0.0196911	0.0100620	0.0100620
	0.050	0.0112500	0.0100618	0.0100620		
	0.075	0.0050000	0.0025468	0.0025563		0.0094087
5 p	0.025	0.0094531	0.0094011	0.0094036		0.0093050
	0.050	0.0028125	0.0026056	0.0026490		0.0091523
5 d	0.025	0.0094531	0.0092977	0.0093037		
	0.050	0.0028125	0.0022044	0.0023131		
5f	0.025	0.0094531	0.0091507	0.0091521		
	0.050	0.0028125	0.0017421	0.0017835		
5g	0.025	0.0094531	0.0089465	0.0089465		
6p	0.050	0.0028125	0.0010664	0.0010159		
6d	0.025	0.0042014	0.0041493	0.0041548		
6f	0.025	0.0042014	0.0040452	0.0040606		
6g	0.025	0.0042014	0.0038901	0.0039168		

the other methods for small δ values. For large δ values, there are differences between our results and the results of others. This difference is due to the $\widetilde{V}_{\text {eff }}(r)$ potential, which we have used to approximate the $V_{\text {eff }}(r)$ potential. As seen from figure 1, for large δr values, the discrepancy becomes apparent between our $\widetilde{V}_{\text {eff }}(r)$ and true $V_{\text {eff }}(r)$ potentials. This gives rise to the differences for the eigenvalues presented in tables 1 and 2 at large δ values.

Now, as indicated in section 2 , we can determine the corresponding wavefunctions by using equation (15). When we compare equations (6) and (28), we find $N=-1, b=1, a=$ $l+1$ and $t=\frac{2 \varepsilon-1}{2}$. Therefore, we find $\rho=2(\varepsilon+l+1)$ and $\sigma=2 \varepsilon+1$. So, we can easily find the solution for $f_{n l}(z)$, for the energy eigenvalue equation (32) by using equation (15):

$$
\begin{equation*}
f_{n l}(z)=(-1)^{n} \frac{\Gamma\left(2 \varepsilon_{n}+n+1\right)}{\Gamma\left(2 \varepsilon_{n}+1\right)}{ }_{2} F_{1}\left(-n, 2 \varepsilon_{n}+2 l+2+n ; 2 \varepsilon_{n}+1 ; z\right) \tag{34}
\end{equation*}
$$

Thus, we can write the total radial wavefunction as follows:

$$
\begin{equation*}
u_{n l}(z)=N z^{\varepsilon_{n}}(1-z)^{l+1}{ }_{2} F_{1}\left(-n, 2\left(\varepsilon_{n}+l+1\right)+n ; 2 \varepsilon_{n}+1 ; z\right) \tag{35}
\end{equation*}
$$

where N is the normalization constant.

4. Conclusion

We have shown an alternative method to obtain the energy eigenvalues and corresponding eigenfunctions of the Hulthén potential within the framework of the asymptotic iteration method for any l states. We have calculated the energy eigenvalues for the Hulthén potential with $Z=1$ and several values of the screening parameter. The wavefunctions are physical and energy eigenvalues are in good agreement with the results obtained by other methods. In order to demonstrate this, AIM results have been compared with the results of the numerical integration [9], variational [9], shifted $1 / N$ expansion [11] and SUSY [13] methods in tables 1 and 2. For small δ values, AIM results are in good agreement with the results of the other methods, but in the high-screening region the agreement is poor. The reason is simply that when δr increases in the high-screening region, the agreement between $V_{\text {eff }}(r)$ and $\widetilde{V}_{\text {eff }}(r)$ potentials decreases as shown in figure 1 . This problem could be solved by making a better approximation of the centrifugal term.

It should be pointed out that the asymptotic iteration method gives the eigenvalues directly by transforming the radial Schrödinger equation into a form of $y^{\prime \prime}=\lambda_{0}(r) y^{\prime}+s_{0}(r) y$. The wavefunctions are easily constructed by iterating the values of $s_{0}(r)$ and $\lambda_{0}(r)$. The asymptotic iteration method results in exact analytical solutions if there is any and provides the closed forms for the energy eigenvalues as well as the corresponding eigenfunctions. Where there is no such solution, the energy eigenvalues are obtained by using an iterative approach [18-20]. As presented, AIM puts no constraint on the potential parameter values involved and is easy to implement. The results are sufficiently accurate for practical purposes.

Acknowledgments

This paper is an output of the project supported by the Scientific and Technical Research Council of Turkey (TÜBİ TAK), under the project number TBAG-106T024, and Erciyes University (FBA-03-27, FBT-04-15, FBT-04-16). Authors would also like to thank Dr Ayṣe Boztosun for the proofreading as well as Professor R L Hall and Dr H Çiftçi for useful comments on the manuscript.

References

[1] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251267
[2] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basle: Birkhauser)
[3] Çiftçi H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 3611807
[4] Çiftçi H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 381147
[5] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 396955
[6] Hulthén L 1942 Ark. Mat. Astron. Fys. A 285
[7] Akdas M and Sever R 2004 J. Mol. Struct. 710223
[8] Flügge S 1994 Practical Quantum Mechanics vol 1 (Berlin: Springer)
[9] Varshni Y P 4682 Phys. Rev. A 411990
[10] Matthys P and De Meyer H 1988 Phys. Rev. A 381168
[11] Tang A Z and Chan F T 1987 Phys. Rev. A 35911
[12] Ikhdair S M and Sever R 2005 Preprint quant-ph/0508009
[13] Gonul B, Ozer O, Cancelik Y and Kocak M 2000 Phys. Lett. A 275238
[14] Greene R L and Aldrich C 1976 Phys. Rev. A 142363
[15] Myhrman U 1983 J. Phys. A: Math. Gen. 16263
[16] Bechlert A and Bühring W 1988 J. Phys. B: At. Mol. Opt. Phys. 21817
[17] Qian S-W, Huang B-W and Gu Z-Y 2002 New J. Phys. 413
[18] Bayrak O and Boztosun I 2006 Int. J. Quantum Chem. at press Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math. Phys. 47062301
[19] Barakat T 2006 J. Phys. A: Math. Gen. 39823 Barakat T 2005 Phys. Lett. A 344411
Barakat T, Abodayeh K and Mukheimer A 2005 J. Phys. A: Math. Gen. 381299
[20] Fernández F M 2004 J. Phys. A: Math. Gen. 376173

