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Abstract
In this paper, we present the analytical solution of the radial Schrödinger
equation for the Hulthén potential within the framework of the asymptotic
iteration method by using an approximation to the centrifugal potential for any
l states. We obtain the energy eigenvalues and corresponding eigenfunctions
for different screening parameters. The wavefunctions are physical and energy
eigenvalues are in good agreement with the results obtained by other methods
for different δ values. In order to demonstrate this, the results of the asymptotic
iteration method are compared with the results of the supersymmetry, numerical
integration, variational and shifted 1/N expansion methods.

PACS numbers: 03.65.Ge, 34.20.Cf, 34.20.Gj

1. Introduction

Over the last few decades, the energy eigenvalues and corresponding eigenfunctions between
interaction systems have raised a great deal of interest in relativistic quantum mechanics as
well as in non-relativistic quantum mechanics. The exact solution of the wave equations
(relativistic or non-relativistic) is very important since the wavefunction contains all the
necessary information regarding the quantum system under consideration. Analytical methods
such as the supersymmetry (SUSY) [1] and Nikiforov–Uvarov (NU) methods [2] have been
used to solve the wave equations exactly or quasi-exactly for non-zero angular momentum
quantum number (l �= 0) by means of a given potential. The radial Schrödinger equation
for the Hulthèn potential is solved exactly by using several techniques [6–8] for l = 0. For
the case l �= 0, the effective Hulthén potential cannot be solved exactly, but a number of
methods have been used to find the bound-state energy eigenvalues numerically [9] and quasi-
analytically, such as the variational [9], perturbation [10], shifted 1/N expansion [11], NU
[12] and SUSY [13] methods. The Hulthén potential [6] is one of the important short-range
potentials in physics and it has been applied to a number of areas such as nuclear and particle
physics, atomic physics, condensed matter and chemical physics (see [9] and references
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therein). Therefore, it would be interesting and important to solve the non-relativistic radial
Schrödinger equation for this potential for l �= 0, since it has been extensively used to describe
the bound and continuum states of the interaction systems. Recently, an alternative method,
called the asymptotic iteration method (AIM), has been developed by Çiftçi et al [3, 4] for
solving second-order homogeneous linear differential equations and it has been applied to
solve the non-relativistic radial Schrödinger equation or the relativistic Dirac equation.

In this paper, we aim to solve the Hulthén potential to obtain the energy eigenvalues and
corresponding eigenfunctions for any l states. In the next section, AIM is introduced. Then,
in section 3, the Schrödinger equation is solved by using AIM for the Hulthén potential for
any l states and our AIM results are given in comparison with the results of the numerical
integration [9], variational [9], shifted 1/N expansion [11] and SUSY [13] methods. Finally,
section 4 is devoted to the summary and conclusion.

2. Overview of the asymptotic iteration method

2.1. Energy eigenvalues

AIM is briefly outlined here and the details can be found in [3–5]. AIM is proposed to solve
the second-order differential equations of the form

y ′′ = λ0(x)y ′ + s0(x)y, (1)

where λ0(x) �= 0 and the prime denotes the derivative with respect to x. The variables s0(x)

and λ0(x) are sufficiently differentiable. The differential equation (1) has a general solution
[3]

y(x) = exp

(
−

∫ x

α(x1) dx1

)[
C2 + C1

∫ x

exp

(∫ x1

[λ0(x2) + 2α(x2)] dx2

)
dx1

]
(2)

for sufficiently large k, k > 0, if

sk(x)

λk(x)
= sk−1(x)

λk−1(x)
= α(x), k = 1, 2, 3, . . . , (3)

where

λk(x) = λ′
k−1(x) + sk−1(x) + λ0(x)λk−1(x),

sk(x) = s ′
k−1(x) + s0(x)λk−1(x), k = 1, 2, 3, . . . .

(4)

Note that one can also start the recurrence relations from k = 0 with the initial conditions
λ−1 = 1 and s−1 = 0 [20]. For a given potential such as the Hulthén potential, the radial
Schrödinger equation is converted to the form of equation (1). Then, s0(x) and λ0(x) are
determined and sk(x) and λk(x) parameters are calculated by the recurrence relations given
by equation (4).

The termination condition of the method in equation (3) can be arranged as

�k(x) = λk(x)sk−1(x) − λk−1(x)sk(x) = 0, k = 1, 2, 3, . . . . (5)

The energy eigenvalues are obtained from the roots of equation (5) if the problem is exactly
solvable. If not, for a specific n principal quantum number, we choose a suitable x0 point,
determined generally as the maximum value of the asymptotic wavefunction or the minimum
value of the potential [3, 18–20], and the approximate energy eigenvalues are obtained from
the roots of this equation for sufficiently large values of k with iteration.
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2.2. Energy eigenfunctions

In this study, we seek the exact solution of the radial Schrödinger equation for which the
relevant second-order homogenous linear differential equation takes the following general
form [4]:

y ′′ = 2

(
axN+1

1 − bxN+2
− (t + 1)

x

)
y ′ − wt

k(N)xN

1 − bxN+2
y, 0 < x < ∞. (6)

If this equation is compared to equation (1), it entails the following expressions:

λ0(x) = 2

(
axN+1

1 − bxN+2
− (t + 1)

x

)
, s0(x) = − wt

k(N)xN

1 − bxN+2
. (7)

a and b are constants and wt
k(N) can be determined from condition (3) for k = 0, 1, 2, 3, . . .

and N = −1, 0, 1, 2, 3, . . . as follows:

wt
k(−1) = k(2a + 2bt + (k + 1)b), (8)

wt
k(0) = 2k(2a + 2bt + (2k + 1)b), (9)

wt
k(1) = 3k(2a + 2bt + (3k + 1)b), (10)

wt
k(2) = 4k(2a + 2bt + (4k + 1)b), (11)

wt
k(3) = 5k(2a + 2bt + (5k + 1)b), (12)

. . . .

Hence, these formulae are easily generalized as

wt
k(N) = b (N + 2)2 k

(
k +

(2t + 1) b + 2a

(N + 2) b

)
. (13)

The exact eigenfunctions can be derived from the following generator:

yn(x) = C2 exp

(
−

∫ x sk(x
′)

λk(x ′)
dx

′
)

, (14)

where k � n, n represents the radial quantum number and k denotes the iteration number. For
exactly solvable potentials, the radial quantum number n is equal to the iteration number k and
the eigenfunctions are obtained directly from equation (14). For nontrivial potentials that have
no exact solutions, k is always larger than n in these numerical solutions and the approximate
energy eigenvalues are obtained from the roots of equation (5) for sufficiently large values of
k with iteration. It should be pointed out that α(x) given by equation (3) is equal to zero for
the ground state. Therefore, using equation (3) with (7) in equation (14), the eigenfunctions
are obtained as follows:

y0(x) = C2, y1(x) = −C2(N + 2)σ

(
1 − b(ρ + 1)

σ
xN+2

)
,

y2(x) = C2(N + 2)2σ(σ + 1)

(
1 − 2b(ρ + 2)

σ
xN+2 +

b2(ρ + 2)(ρ + 3)

σ (σ + 1)
x2(N+2)

)
,

y3(x) = −C2
σ(σ + 1)(σ + 2)

(N + 2)−3

(
1 − 3b(ρ + 3)

σ
xN+2 +

3b2(ρ + 3)(ρ + 4)

σ (σ + 1)
x2(N+2)

− b3(ρ + 3)(ρ + 4)(ρ + 5)

σ (σ + 1)(σ + 2)
x3(N+2)

)
,

. . . .
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Finally, the following general formula for the exact solutions yn(x) is obtained as

yn(x) = (−1)n C2(N + 2)n (σ )n 2F1(−n, ρ + n; σ ; bxN+2). (15)

It is important to note that the square-integrable one in L2 is this total wavefunction
which is the asymptotic form of the wavefunction times yn(x) given by equation (14). Here,
(σ )n = �(σ+n)

�(σ )
, σ = 2t+N+3

N+2 and ρ = (2t+1)b+2a

(N+2)b
. (σ )n and 2F1 are known as the Pochhammer

symbol and the Gauss hypergeometric function, respectively.

3. Calculation of the energy eigenvalues and eigenfunctions

The motion of a particle with the mass M in the spherically symmetric potential is described
in the spherical coordinates by the following Schrödinger equation:

−h̄2

2M

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
+ V (r)

)
�nlm(r, θ, φ)

=E�nlm(r, θ, φ). (16)

Defining �nlm(r, θ, φ) = Rnl(r)Ylm(θ, φ), we obtain the radial part of the Schrödinger
equation: (

d2

dr2
+

2

r

d

dr

)
Rnl(r) +

2M

h̄2

[
E − V (r) − l(l + 1)h̄2

2Mr2

]
Rnl(r) = 0. (17)

It is sometimes convenient to define Rnl(r) and the effective potential as follows:

Rnl(r) = unl(r)

r
, Veff = V (r) +

l(l + 1)h̄2

2Mr2
. (18)

Since (
d2

dr2
+

2

r

d

dr

)
unl(r)

r
= 1

r

d2

dr2
unl(r), (19)

the radial Schrödinger equation [8] given by equation (17) follows that

d2unl(r)

dr2
+

2M

h̄2 [E − Veff] unl(r) = 0. (20)

The Hulthén potential [6] is given by

VH(r) = −Ze2δ
e−δr

1 − e−δr
, (21)

where Z and δ are, respectively, the atomic number and the screening parameter, determining
the range for the Hulthén potential. The Hulthén potential behaves like the Coulomb potential
near the origin (r −→ 0), but in the asymptotic region (r � 1) the Hulthén potential decreases
exponentially, so its capacity for bound states is smaller than the Coulomb potential. However,
for small values of the screening parameter δ, the Hulthén potential becomes the Coulomb
potential given by VC = −Ze2

r
. The effective Hulthén potential is

Veff(r) = VH(r) + Vl = −Ze2δ
e−δr

1 − e−δr
+

l(l + 1)h̄2

2Mr2
, (22)

where Vl = l(l+1)h̄2

2Mr2 is known as the centrifugal term. This effective potential cannot be
solved analytically for l �= 0 because of the centrifugal term. Therefore, we must use an
approximation for the centrifugal term similar to other authors [12–17]. In this approximation,
1
r2 = δ2 e−δr

(1−e−δr )2 is used for the centrifugal term. As shown in figure 1, this approximation is
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Figure 1. The variation of the effective Hulthén Veff(r) and approximate effective Hulthén
potentials Ṽeff(r) with respect to δr for various values of the screening parameter. The parameters
are in atomic units (h̄ = e = m = 1) and δ change from 0.4 to 5.2 in steps of 0.4.

only valid for small δr and it breaks down in the high-screening region. For small δr, Ṽeff(r) is
very well approximated to Veff(r) and the Schrödinger equation for this approximate potential
is solvable analytically. So, the effective potential becomes

Ṽeff(r) = −Ze2δ
e−δr

1 − e−δr
+

l(l + 1)h̄2δ2

2M

e−δr

(1 − e−δr )2
. (23)

Instead of solving the radial Schrödinger equation for the effective Hulthén potential
Veff(r) given by equation (22), we now solve the radial Schrödinger equation for the new
effective potential Ṽeff(r) given by equation (23). Inserting this new effective potential into
equation (20) and using the following ansätze in order to make the differential equation more
compact:

−ε2 = 2ME

h̄2δ2
, β2 = 2MZe2

h̄2δ
, δr = x, (24)

the radial Schrödinger equation takes the following form:

d2unl(x)

dx2
+

[
−ε2 + β2 e−x

(1 − e−x)
− l(l + 1)

e−x

(1 − e−x)2

]
unl(x) = 0. (25)

If we rewrite equation (25) by using a new variable of the form z = e−x , we obtain

d2unl(z)

dz2
+

1

z

dunl(z)

dz
+

[
−ε2

z2
+

β2

z(1 − z)
− l(l + 1)

z(1 − z)2

]
unl(z) = 0. (26)

In order to solve this equation with AIM, we should transform this equation to the form of
equation (1). Therefore, the reasonable physical wavefunction we propose is as follows:

unl(z) = zε(1 − z)l+1fnl(z). (27)
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If we insert this wavefunction into equation (26), we have the second-order homogeneous
linear differential equations in the following form:

d2fnl(z)

dz2
=

[
(2ε + 2l + 3)z − (2ε + 1)

z(1 − z)

]
dfnl(z)

dz
+

[
(2ε + l + 2)l + 2ε − β2 + 1

z(1 − z)

]
fnl(z),

(28)

which is now amenable to an AIM solution. By comparing this equation with equation (1),
we can write the λ0(z) and s0(z) values and by means of equation (4) we may calculate λk(z)

and sk(z). This gives

λ0(z) =
(

(2ε + 2l + 3)z − (2ε + 1)

z(1 − z)

)
,

s0(z) =
(

(2ε + l + 2)l + 2ε − β2 + 1

z(1 − z)

)
,

λ1(z) = 2 + 6ε − 7z − 2lz − β2z + 12z2l − 18εz − 6εzl

z2 (−1 + z)2 (29)

+
12εz2 + 11z2 + 4ε2 + l2z + β2z2 + 4ε2z2 − 8ε2z + 6εz2l + 3l2z2

z2 (−1 + z)2 ,

s1(z) = (2l + 2ε − β2 + 2εl + l2 + 1)(−2 + 5z + 2εz + 2lz − 2ε)

z2(−1 + z)2
,

. . . .

Combining these results with the quantization condition given by equation (5) yields

s0λ1 − s1λ0 = 0 ⇒ ε0 = β2 − 1 − 2l − l2

2(l + 1)
, for k = 1,

s1λ2 − s2λ1 = 0 ⇒ ε1 = β2 − 4 − 4l − l2

2(l + 2)
, for k = 2,

s2λ3 − s3λ2 = 0 ⇒ ε2 = β2 − 9 − 6l − l2

2(l + 3)
, for k = 3,

. . . .

(30)

When the above expressions are generalized, the eigenvalues turn out to be

εnl =
(

β2 − (n + l + 1)2

2(n + l + 1)

)
, n, l = 0, 1, 2, 3, . . . . (31)

Using equation (24), we obtain the energy eigenvalues Enl ,

Enl = − h̄2

2M

[
MZe2

h̄2(n + l + 1)
− (n + l + 1)δ

2

]2

. (32)

In the atomic units (h̄ = M = e = 1) and for Z = 1, equation (32) turns out to be

Enl = −1

2

[
1

(n + l + 1)
− (n + l + 1)δ

2

]2

. (33)

In order to test the accuracy of equation (33), we calculate the energy eigenvalues for
Z = 1, any n and l quantum numbers and several values of the screening parameter. AIM
results are compared with the results of the numerical integration [9], variational [9], shifted
1/N expansion [11] and SUSY [13] methods in tables 1 and 2. As can be seen from the
results presented in these tables, the AIM results are in good agreement with the results of
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Table 1. Energy eigenvalues of the Hulthén potential as a function of the screening parameter for
2p, 3p and 3d states in atomic units (h̄ = m = e = 1) and for Z = 1.

State δ AIM SUSY [13] Numerical integration [9] Variational [9] Shifted 1
N

[11]

2p 0.025 0.112 8125 0.112 7605 0.112 7605 0.112 7605
0.050 0.101 2500 0.101 0425 0.101 0425 0.101 0425 0.101 0424
0.075 0.090 3125 0.089 8478 0.089 8478 0.089 8478
0.100 0.080 0000 0.079 1794 0.079 1794 0.079 1794 0.079 1794
0.150 0.061 2500 0.059 4415 0.059 4415 0.059 4415
0.200 0.045 0000 0.041 8854 0.041 8860 0.041 8860 0.041 8857
0.250 0.031 2500 0.026 6060 0.026 6111 0.026 6108
0.300 0.020 0000 0.013 7596 0.013 7900 0.013 7878
0.350 0.011 2500 0.003 6146 0.003 7931 0.003 7734

3p 0.025 0.043 7590 0.043 7068 0.043 7069 0.043 7069
0.050 0.033 3681 0.033 1632 0.033 1645 0.033 1645 0.033 165 18
0.075 0.024 3837 0.023 9331 0.023 9397 0.023 9397
0.100 0.016 8056 0.016 0326 0.016 0537 0.016 0537 0.016 067 72
0.150 0.005 8681 0.004 3599 0.004 4663 0.004 4660

3d 0.025 0.043 7587 0.043 6030 0.043 6030 0.043 6030
0.050 0.033 3681 0.032 7532 0.032 7532 0.032 7532 0.032 7532
0.075 0.024 3837 0.023 0306 0.023 0307 0.023 0307
0.100 0.016 8055 0.014 4832 0.014 4842 0.014 4842 0.014 4842
0.150 0.005 8681 0.013 2820 0.001 3966 0.001 3894

Table 2. Energy eigenvalues of the Hulthén potential as a function of the screening parameter for
4p, 4d, 4f, 5p, 5d, 5f, 5g, 6p, 6d, 6f and 6g states in atomic units (h̄ = m = e = 1) and for Z = 1.

State δ AIM SUSY [13] Numerical integration [9] Variational [9] Shifted 1
N

[11]

4p 0.025 0.020 0000 0.019 9480 0.019 9489 0.019 9489
0.050 0.011 2500 0.011 0430 0.011 0582 0.011 0582 0.011 0725
0.075 0.005 0000 0.004 5385 0.004 6219 0.004 6219
0.100 0.001 2500 0.000 4434 0.000 7550 0.000 7532

4d 0.025 0.020 0000 0.019 8460 0.019 8462 0.019 8462
0.050 0.011 2500 0.010 6609 0.010 6674 0.010 6674 0.010 6690
0.075 0.005 0000 0.003 7916 0.003 8345 0.003 8344

4f 0.025 0.020 0000 0.019 6911 0.019 6911 0.019 6911
0.050 0.011 2500 0.010 0618 0.010 0620 0.010 0620 0.010 0620
0.075 0.005 0000 0.002 5468 0.002 5563 0.002 5557

5p 0.025 0.009 4531 0.009 4011 0.009 4036 0.009 4087
0.050 0.002 8125 0.002 6056 0.002 6490

5d 0.025 0.009 4531 0.009 2977 0.009 3037 0.009 3050
0.050 0.002 8125 0.002 2044 0.002 3131

5f 0.025 0.009 4531 0.009 1507 0.009 1521 0.009 1523
0.050 0.002 8125 0.001 7421 0.001 7835

5g 0.025 0.009 4531 0.008 9465 0.008 9465 0.008 9465
0.050 0.002 8125 0.001 0664 0.001 0159

6p 0.025 0.004 2014 0.004 1493 0.004 1548
6d 0.025 0.004 2014 0.004 0452 0.004 0606
6f 0.025 0.004 2014 0.003 8901 0.003 9168
6g 0.025 0.004 2014 0.003 6943 0.003 7201
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the other methods for small δ values. For large δ values, there are differences between our
results and the results of others. This difference is due to the Ṽeff(r) potential, which we
have used to approximate the Veff(r) potential. As seen from figure 1, for large δr values, the
discrepancy becomes apparent between our Ṽeff(r) and true Veff(r) potentials. This gives rise
to the differences for the eigenvalues presented in tables 1 and 2 at large δ values.

Now, as indicated in section 2, we can determine the corresponding wavefunctions by
using equation (15). When we compare equations (6) and (28), we find N = −1, b = 1, a =
l + 1 and t = 2ε−1

2 . Therefore, we find ρ = 2(ε + l + 1) and σ = 2ε + 1. So, we can easily find
the solution for fnl(z), for the energy eigenvalue equation (32) by using equation (15):

fnl(z) = (−1)n
�(2εn + n + 1)

�(2εn + 1)
2F1(−n, 2εn + 2l + 2 + n; 2εn + 1; z). (34)

Thus, we can write the total radial wavefunction as follows:

unl(z) = Nzεn(1 − z)l+1
2F1(−n, 2(εn + l + 1) + n; 2εn + 1; z), (35)

where N is the normalization constant.

4. Conclusion

We have shown an alternative method to obtain the energy eigenvalues and corresponding
eigenfunctions of the Hulthén potential within the framework of the asymptotic iteration
method for any l states. We have calculated the energy eigenvalues for the Hulthén potential
with Z = 1 and several values of the screening parameter. The wavefunctions are physical
and energy eigenvalues are in good agreement with the results obtained by other methods. In
order to demonstrate this, AIM results have been compared with the results of the numerical
integration [9], variational [9], shifted 1/N expansion [11] and SUSY [13] methods in
tables 1 and 2. For small δ values, AIM results are in good agreement with the results
of the other methods, but in the high-screening region the agreement is poor. The reason is
simply that when δr increases in the high-screening region, the agreement between Veff(r) and
Ṽeff(r) potentials decreases as shown in figure 1. This problem could be solved by making a
better approximation of the centrifugal term.

It should be pointed out that the asymptotic iteration method gives the eigenvalues directly
by transforming the radial Schrödinger equation into a form of y ′′ = λ0(r)y

′ + s0(r)y. The
wavefunctions are easily constructed by iterating the values of s0(r) and λ0(r). The asymptotic
iteration method results in exact analytical solutions if there is any and provides the closed
forms for the energy eigenvalues as well as the corresponding eigenfunctions. Where there is
no such solution, the energy eigenvalues are obtained by using an iterative approach [18–20].
As presented, AIM puts no constraint on the potential parameter values involved and is easy
to implement. The results are sufficiently accurate for practical purposes.
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